Содержание
азы для начинающих электриков, сила тока и напряжение, как рассчитать
При выходе из строя какого-нибудь электроблока правильным решением будет вызвать специалиста, который быстро устранит проблему.
- Техника безопасности
- Виды цепей, напряжение и сила тока
- Переменная и постоянная величины
- Мощность и другие параметры
- Закон Ома
Если такой возможности нет, уроки для электриков помогут самостоятельно устранить ту или иную поломку.
При этом стоит помнить о технике безопасности, дабы избежать серьезных увечий.
Техника безопасности
Правила безопасности нужно выучить наизусть — это сохранит здоровье и жизнь при устранении проблем с электричеством. Вот самые важные азы электрики для начинающих:
- Первые работы с сетями лучше всего проводить под присмотром опытного электрика.
- Не рекомендуется работать с высоким напряжением одному. Рядом всегда должен кто-то быть, кто подстрахует в случае проблем — обесточит сеть, вызовет экстренные службы и окажет первую помощь.
- Все работы следует проводить с обесточенными сетями. Также нужно убедиться, что никто не подключит электричество во время монтажа.
Для выполнения монтажных работ необходимо приобрести датчик (индикатор фазы), похожий на отвертку или шило. Это устройство позволяет найти провод, находящийся под напряжением — при его обнаружении на датчике загорается индикатор. Приборы работают по-разному, например, когда пальцем прижат соответствующий контакт.
Перед началом работ необходимо с помощью индикатора удостовериться в том, что все провода не обесточены.
Дело в том, что иногда проводку прокладывают неправильно — автомат на входе отключает только один провод, не обесточивая всю сеть. Такая ошибка может привести к печальным последствиям, ведь человек надеется на полное отключение системы, в то время как некоторый участок может все еще быть активным.
youtube.com/embed/rUlpHdDarIg»>Виды цепей, напряжение и сила тока
Электрические цепи могут быть связаны параллельно либо последовательно. В первом случае электрический ток распределяется по всем цепям, которые соединяются параллельно. Получается, что суммарная единица будет равна сумме тока в любой из цепей.
Параллельные соединения имеют одинаковое напряжение. В последовательной комбинации ток переходит из одной системы в другую. В итоге в каждой линии протекает одинаковый ток.
Не имеет смысла останавливаться на технических определениях напряжения и силы тока (А). Гораздо понятнее будет пояснение на примерах. Так, первый параметр влияет на то, насколько хорошо нужно изолировать различные участки. Чем оно больше, тем выше вероятность того, что в каком-то месте случится пробой. Из этого следует, что высокому напряжению необходима качественная изоляция. Оголенные соединения необходимо держать подальше друг от друга, от других материалов и от земли.
Электрическое напряжение (U) принято измерять в Вольтах.
Более мощное напряжение несет большую угрозу для жизни. Но не стоит полагать, будто низкое абсолютно безопасно. Опасность для человека зависит и от силы тока, которая проходит через организм. А этот параметр уже напрямую подчиняется сопротивлению и напряжению. При этом сопротивление организма связано с сопротивлением кожи, которое может меняться в зависимости от морального и физического состояния человека, влажности и многих других факторов. Бывали случаи, когда человек умирал от удара током всего 12 вольт.
Кроме того, в зависимости от силы тока подбираются различные провода. Чем выше A, тем толще нужен провод.
Переменная и постоянная величины
Когда электричество только зарождалось, потребителям поставляли постоянный ток. Однако выяснилось, что стандартную величину 220 вольт практически невозможно передать на большое расстояние.
С другой стороны, нельзя подводить тысячи вольт — во-первых, это опасно, во-вторых, тяжело и дорого изготавливать приборы, работающие на таком высоком напряжении. В результате было решено преобразовывать напряжение — до города доходит 10 вольт, а в дома уже попадает 220. Преобразование происходит при помощи трансформатора.
Что касается частоты напряжения, то она составляет 50 Герц. Это значит, что напряжение меняет свое состояние 50 раз в минуту. Оно стартует с нуля и вырастает до отметки в 310 вольт, затем падает до нуля, затем до -310 вольт и опять поднимается до нуля. Все работа протекает в циклическом ключе. В таких случаях напряжение в сети равняется 220 вольт — почему не 310, будет рассказано дальше. За границей встречаются разные параметры — 220, 127 и 110 вольт, а частота может быть 60 герц.
Мощность и другие параметры
Электрический ток необходим для выполнения какой-либо работы, например, для вращения двигателя или нагрева батарей. Можно вычислить, какую работу он совершит, умножая силу тока на напряжение. Например, электронагреватель, имеющий 220 вольт, и обладающий мощностью 2.2 кВт, будет расходовать ток в 10 А.
Стандартное измерение мощности происходит в ваттах (Вт). Электрический ток силой 1 ампер с напряжением 1 вольт может выделить мощность 1 ватт.
Вышеприведенная формула используется для обоих видов тока. Однако вычисление первого имеет некоторую сложность, — необходимо умножить силу тока на U в каждую единицу времени. А если учесть, что у переменного тока все время меняются показатели напряжения и силы, то придется брать интеграл. Поэтому было применено понятие действующего значения.
Грубо говоря, действующий параметр — это среднее значение силы тока и напряжения, выбранное специальным путем.
Переменный и постоянный ток имеет амплитудное и действующее состояние. Амплитудный параметр — максимальная единица, до которой может подниматься напряжение. Для переменного вида амплитудное число равняется действующему, умноженному на √ 2. Этим объясняются показатели напряжения 310 и 220 В.
Закон Ома
Следующим понятием в основах электрики для начинающих является закон Ома. Он утверждает, что сила тока равна напряжению, поделенному на сопротивление. Этот закон действует как для переменного тока, так и для постоянного.
Сопротивление измеряют в омах. Так, сквозь проводник с сопротивлением 1 ом при напряжении 1 вольт проходит ток 1 ампер. Закон Ома порождает два интересных следствия:
- Если известна A, протекающая через систему, и сопротивление цепи, то можно вычислить мощность.
- Мощность также можно посчитать, зная действующее сопротивление и U.
При этом для определения мощности берется не напряжение сети, а U, примененное к проводнику. Получается, если какой-либо прибор включен в систему через удлинитель, то действие будет применено как к прибору, так и к проводам удлинительного устройства. В результате провода будут нагреваться.
Конечно, нежелательно, чтобы соединения нагревались, так как именно это приводит к различным нарушениям работы электропроводки.
Однако основные проблемы заключаются не в самом проводе, а в различных местах соединения. В этих точках сопротивление бывает в десятки раз выше, чем по периметру провода. Со временем в результате окисления сопротивление может лишь повышаться.
Особенно опасными являются места соединения различных металлов. В них процессы окисления проходят гораздо быстрее. Самые частые зоны соединений:
- Места скручивания проводов.
- Клеммы выключателей, розеток.
- Зажимные контакты.
- Контакты в распределительных щитках.
- Вилки и розетки.
Поэтому при ремонте первым делом стоит обратить внимание на эти участки. Они должны быть доступными для монтажа и контроля.
Выполняя вышеописанные правила, можно самостоятельно решать некоторые бытовые вопросы, связанные с электрикой в доме. Главное — помнить о технике безопасности.
Электрика для чайников – инструкция Elektrikru.ru
С учетом того, что большинство бытовых и промышленных приборов являются полностью или частично электрическими, любой человек должен понимать азы, основы электрики, чтобы не создавать условий повышенного риска при их эксплуатации. Углубленных познаний в данном случае не требуется – это по части профессионалов, но самостоятельно заменить розетку или выключатель, собрать удлинитель с нужными параметрами может каждый.
Задать вопрос электрику:
вы можете задать любой интересующий вопрос по электрики нашим специалистам онлайн
Написать в WhatsAppНаписать в Телеграм
Что такое электрический ток и как он обеспечивает работу электроприборов?
Электрический ток – это упорядоченное движение заряженных частиц – электронов. В бытовых сетях используется переменный ток, полярность которого постоянно меняется, как правило, с частотой в 50 Герц. То есть, за одну секунду на фазном проводе полярность поменяется 50 раз. Для обеспечения работы электроприбора одной лишь фазы – провода, который находится под напряжением от питающей электросети, недостаточно. Нужен еще и ноль – рабочее заземление. У электроприбора, работающего на переменном токе, два входных контакта, причем неважно, на какой из них пойдет фаза, а на какой – ноль. Важно, что цепь замкнется, заряженные частицы двинутся в сердце оборудования и заставят его работать.
На картинке выше вы видите, что в питающем проводе не две, а три изолированных жилы. Нулевой защитный провод – это заземление, которое необходимо для снятия статического заряда с корпусов бытовых электроприборов, что делает их эксплуатацию более надежной, безопасной. Важно соблюдать порядок подключения проводов при установке точек потребления – розеток. На фото ниже вы видите, как должны быть разведены питающие провода.
Причем фазу с нулем вы можете менять местами, но заземление обязательно должно быть на своем месте.
Важно запомнить!
Провод фазы – всегда красный, коричневый или белый. Провод нуля – синий. Провод заземления – желто-зеленый. Эти правела облегчает проведение электромонтажа и позволяет избежать коротких замыканий при работе.
Если вам нужно определить фазу в розетке, то сделать это можно при помощи отвертки-тестера. Для этого возьмите ее за пластиковую рукоятку, одним пальцем зажав металлический болтик на торце, а затем наконечником коснитесь контакта. Если загорится красная лампочка в корпусе отвертки, значит, вы имеете дело с фазой. Если не загорится, значит – это ноль. Бывает, что лампочка светится, но очень слабо. Это может говорить о неисправности проводки или электрооборудования.
Такое тестирование абсолютно безопасно.
Основные элементы электроснабжения в частном доме
Подведение питающего кабеля к дому осуществляется от трансформатора, пример которого вы видите на фото ниже.
Он понижает высокое напряжение до стандартных 220-230В, на которые и рассчитаны все бытовые электроприборы.
Для разведения питания по квартире используется целый набор элементов, в числе которых:
- Счетчик учета электроэнергии
- Комплекс УЗО – автоматов защитного отключения
- Электропроводка
На картинке выше наглядно показано, что под каждую отдельную группу точек подключения или силовой электроприбор отводится отдельная ветка с УЗО. Автомат делает более безопасной системы электропитания, так как при коротком замыкании сразу размыкает контур. УЗО рассчитаны на определенное сопротивление, в зависимости от мощности приборов, которые планируется к ним подключать.
В щитке они устанавливаются на DIN рейки, как это показано на фото ниже.
От каждого автомата питающий провод подводится к розетке, группе освещения или мощному электроприбору. Понимая основы электрики, вы сможете самостоятельно провести простейшие электромонтажные работы, но для решения более ответственных и сложных задач лучше обращайтесь к профессионалам с соответствующей квалификацией и практическим опытом.
Понимание основ электричества, представляя его как воду
«Мы верим, что электричество существует, потому что электрическая компания продолжает присылать нам счета за него. Но мы не можем понять, как он перемещается внутри проводов». — Дэйв Бэрри
Основные законы электричества математически сложны. Но использование воды в качестве аналогии предлагает простой способ получить базовое понимание.
Электричество 101 – Напряжение, ток и сопротивление
Тремя основными компонентами электричества являются напряжение, ток и сопротивление.
- НАПРЯЖЕНИЕ похоже на давление, которое проталкивает воду через шланг. Измеряется в вольтах (В).
- ТОК подобен диаметру шланга. Чем он шире, тем больше воды будет проходить. Измеряется в амперах (I или A).
- СОПРОТИВЛЕНИЕ похоже на песок в шланге, который замедляет поток воды. Измеряется в омах (R или Ω).
Напряжение, ток и сопротивление взаимосвязаны. Если вы измените один из них в цепи, остальные тоже изменятся. В частности, напряжение равно току, умноженному на сопротивление (V = I x R). Думая о воде, если вы добавите песок в шланг и сохраните давление прежним, это все равно, что уменьшить диаметр шланга… будет течь меньше воды.
Электричество 201 – Постоянный и переменный ток, батареи и трансформаторы
Как работает электричество в электронике и сети?
ПОСТОЯННЫЙ ТОК или ПОСТОЯННЫЙ ток похож на обычный поток воды в шланге – он течет в одном направлении, от источника к концу. Исторически так сложилось, что округ Колумбия изначально отстаивал Томас Эдисон в знаменитых «Войнах текущих» конца 1800-х годов. Вашингтон проиграл войну за сеть, но нашел еще более захватывающую роль в современной электронике, такой как компьютеры, телефоны и телевизоры.
ПЕРЕМЕННЫЙ ТОК или переменный ток похож на воду, текущую туда и обратно внутри шланга много раз в секунду. Аналогия с водой здесь немного нарушается, но переменный ток легко создается электрическими генераторами (также называемыми генераторами переменного тока). Никола Тесла и Джордж Вестингауз выступали за переменный ток, а не за постоянный, и в конце концов они победили. В настоящее время переменный ток является мировым стандартом для подачи электроэнергии в дома и здания через сеть.
АККУМУЛЯТОРЫ можно рассматривать как водяные насосы, которые циркулируют воду по шлангу, который проходит по замкнутому контуру обратно к аккумулятору. Для определения емкости аккумуляторов используется множество показателей, и не все они сразу логичны. Они включают ампер-часы и киловатт-часы. Батареи могут генерировать только энергию постоянного тока.
ТРАНСФОРМАТОРЫ похожи на то, что вы держите большой палец частично над концом шланга, чтобы вода разбрызгивалась дальше. Объем воды (мощность) остается прежним, но давление (напряжение) увеличивается по мере уменьшения диаметра (тока). Это именно то, что трансформаторы делают для воздушных линий электропередач. Электричество может перемещаться дальше с меньшими потерями, потому что сопротивление (песок) не препятствует электричеству (воде), когда ток ниже (шланг меньшего диаметра). Трансформаторы работают только с переменным током. Способность передавать электричество на большие расстояния является основной причиной того, что переменный ток превзошел постоянный ток столетие назад.
Электричество 301 – Мощность и энергия
Теперь давайте продолжим использовать аналогию со шлангом, чтобы погрузиться в более мутные воды цепей (каламбур, извините).
МОЩНОСТЬ подобна объему воды, который равен , вытекающему из шланга при заданном давлении и диаметре. Электрическая мощность измеряется в ваттах (Вт). А более крупные системы измеряются в киловаттах (1 кВт = 1000 Вт) или мегаваттах (1 МВт = 1 000 000 Вт).
ЭНЕРГИЯ подобна измерению объема воды, который имеет протечек через шланг за период времени , как наполнение 5-галлонного ведра за минуту. Электрическую энергию часто путают с электроэнергией, но это две разные вещи: мощность измеряет мощность, а энергия измеряет доставку. Электрическая энергия измеряется в ватт-часах (ватт-часах), но большинство людей больше знакомы с измерением в своих счетах за электроэнергию, киловатт-часами (1 кВтч = 1000 ватт-часов). Электроэнергетические компании работают в большем масштабе и обычно используют мегаватт-часы (1 МВтч = 1000 кВтч).
Надеюсь, это полезное введение в основы электричества. Мы будем рады услышать ваши отзывы и предложения, поэтому, пожалуйста, оставляйте предложения и комментарии ниже.
Напряжение, ток, сопротивление и закон Ома
- Домашний
- Учебники
- Напряжение, ток, сопротивление и закон Ома
≡ Страниц
Авторы:
CTaylor
Избранное
Любимый
136
Основы электричества
Приступая к изучению мира электричества и электроники, очень важно начать с понимания основ напряжения, силы тока и сопротивления. Это три основных строительных блока, необходимых для управления электричеством и его использования. Поначалу эти концепции может быть трудно понять, потому что мы не можем их «видеть». Нельзя невооруженным глазом увидеть энергию, текущую по проводу, или напряжение батареи, лежащей на столе. Даже молния в небе, хотя и видимая, на самом деле является не обменом энергией, происходящим от облаков к земле, а реакцией воздуха на проходящую через него энергию. Чтобы обнаружить эту передачу энергии, мы должны использовать инструменты измерения, такие как мультиметры, анализаторы спектра и осциллографы, чтобы визуализировать то, что происходит с зарядом в системе. Не бойтесь, однако, этот учебник даст вам общее представление о напряжении, токе и сопротивлении и о том, как они связаны друг с другом.
Георг Ом
Рассмотрено в этом руководстве
- Как электрический заряд связан с напряжением, током и сопротивлением.
- Что такое напряжение, ток и сопротивление.
- Что такое закон Ома и как с его помощью понять электричество.
- Простой эксперимент для демонстрации этих концепций.
Рекомендуемая литература
- Что такое электричество
- Что такое цепь?
Электрический заряд
Электричество — это движение электронов. Электроны создают заряд, который мы можем использовать для совершения работы. Ваша лампочка, ваша стереосистема, ваш телефон и т. д. используют движение электронов для выполнения работы. Все они работают, используя один и тот же основной источник энергии: движение электронов.
Три основных принципа этого руководства можно объяснить, используя электроны, или, точнее, создаваемый ими заряд:
- Напряжение — это разница заряда между двумя точками.
- Ток — это скорость, с которой течет заряд.
- Сопротивление — это способность материала сопротивляться потоку заряда (тока).
Итак, когда мы говорим об этих значениях, мы на самом деле описываем движение заряда и, таким образом, поведение электронов. Цепь представляет собой замкнутый контур, который позволяет заряду перемещаться из одного места в другое. Компоненты в цепи позволяют нам контролировать этот заряд и использовать его для выполнения работы.
Георг Ом был баварским ученым, изучавшим электричество. Ом начинается с описания единицы сопротивления, которая определяется током и напряжением. Итак, давайте начнем с напряжения и пойдем оттуда.
Напряжение
Мы определяем напряжение как количество потенциальной энергии между двумя точками цепи. Одна точка имеет больший заряд, чем другая. Эта разница заряда между двумя точками называется напряжением. Он измеряется в вольтах, что технически представляет собой разность потенциалов между двумя точками, которые передают один джоуль энергии на кулон проходящего через них заряда (не паникуйте, если это не имеет смысла, все будет объяснено). Единица «вольт» названа в честь итальянского физика Алессандро Вольта, который изобрел то, что считается первой химической батареей. Напряжение обозначается в уравнениях и схемах буквой «V».
При описании напряжения, тока и сопротивления часто используется аналогия с резервуаром для воды. В этой аналогии заряд представлен количеством воды , напряжение представлен водой давлением , а ток представлен потоком воды . Итак, для этой аналогии запомните:
- Вода = Зарядка
- Давление = Напряжение
- Расход = Текущий
Рассмотрим резервуар для воды на определенной высоте над землей. На дне этого бака есть шланг.
Давление на конце шланга может представлять собой напряжение. Вода в баке представляет собой заряд. Чем больше воды в баке, тем выше заряд, тем большее давление измеряется на конце шланга.
Мы можем думать об этом резервуаре как о батарее, месте, где мы храним определенное количество энергии, а затем высвобождаем ее. Если мы спустим наш бак на определенное количество, давление, создаваемое на конце шланга, упадет. Мы можем думать об этом как об уменьшении напряжения, например, когда фонарик тускнеет, когда батарейки садятся. 18 электронов (1 кулон) в секунду, проходящих через точку цепи. Усилители представлены в уравнениях буквой «I».
Допустим, у нас есть два бака, к каждому из которых подходит шланг снизу. В каждом баке одинаковое количество воды, но шланг одного бака уже, чем шланг другого.
Мы измеряем одинаковое давление на конце любого шланга, но когда вода начинает течь, расход воды в баке с более узким шлангом будет меньше расхода воды в баке с более широким шлангом. В электрических терминах ток через более узкий шланг меньше, чем ток через более широкий шланг. Если мы хотим, чтобы поток через оба шланга был одинаковым, мы должны увеличить количество воды (зарядку) в баке с более узким шлангом.
Это увеличивает давление (напряжение) на конце более узкого шланга, проталкивая больше воды через резервуар. Это аналогично увеличению напряжения, которое вызывает увеличение тока.
Теперь мы начинаем видеть взаимосвязь между напряжением и током. Но здесь следует учитывать третий фактор: ширину шланга. В этой аналогии ширина шланга является сопротивлением. Это означает, что нам нужно добавить еще один член в нашу модель:
- Вода = заряд (измеряется в кулонах)
- Давление = Напряжение (измеряется в вольтах)
- Расход = ток (измеряется в амперах или для краткости «амперы»)
- Ширина шланга = сопротивление
Сопротивление
Рассмотрим еще раз наши два резервуара для воды, один с узкой трубой, а другой с широкой трубой.
Само собой разумеется, что через узкую трубу нельзя пропустить такой же объем, как через более широкую при том же давлении. Это сопротивление. Узкая труба «сопротивляется» потоку воды через нее, хотя вода находится под тем же давлением, что и резервуар с более широкой трубой. 918 электронов. Это значение обычно обозначается на схемах греческой буквой «Ω», которая называется омега и произносится как «ом».
Закон Ома
Объединив элементы напряжения, тока и сопротивления, Ом вывел формулу:
Где
- В = напряжение в вольтах
- I = ток в амперах
- R = сопротивление в омах
Это называется законом Ома. Допустим, например, что у нас есть цепь с потенциалом 1 вольт, током 1 ампер и сопротивлением 1 Ом. Используя закон Ома, мы можем сказать:
Допустим, это наш бак с широким шлангом. Количество воды в баке определяется как 1 вольт, а «узость» (сопротивление течению) шланга определяется как 1 Ом. Используя закон Ома, это дает нам поток (ток) в 1 ампер.
Используя эту аналогию, давайте теперь посмотрим на бак с узким шлангом. Поскольку шланг уже, его сопротивление потоку выше. Определим это сопротивление как 2 Ом. Количество воды в резервуаре такое же, как и в другом резервуаре, поэтому, используя закон Ома, наше уравнение для резервуара с узким шлангом равно 9.0006
Но какой ток? Поскольку сопротивление больше, а напряжение такое же, это дает нам значение тока 0,5 ампер:
Итак, в баке с большим сопротивлением ток меньше. Теперь мы можем видеть, что если мы знаем два значения закона Ома, мы можем найти третье. Продемонстрируем это на эксперименте.
Эксперимент по закону Ома
В этом эксперименте мы хотим использовать 9-вольтовую батарею для питания светодиода. Светодиоды хрупкие, и через них может протекать только определенное количество тока, прежде чем они сгорят. В документации на светодиод всегда будет «номинальный ток». Это максимальное количество тока, которое может протекать через конкретный светодиод, прежде чем он перегорит.
Необходимые материалы
Для выполнения экспериментов, перечисленных в конце руководства, вам понадобятся:
- Мультиметр
- А 9-вольтовая батарея
- Резистор 560 Ом (или следующее ближайшее значение)
- Светодиод
ПРИМЕЧАНИЕ. Светодиоды относятся к так называемым «неомическим» устройствам. Это означает, что уравнение для тока, протекающего через сам светодиод, не так просто, как V=IR. Светодиод вносит в цепь то, что называется «падением напряжения», тем самым изменяя величину тока, протекающего через нее. Однако в этом эксперименте мы просто пытаемся защитить светодиод от перегрузки по току, поэтому мы пренебрежем токовыми характеристиками светодиода и выберем значение резистора, используя закон Ома, чтобы быть уверенным, что ток через светодиод безопасно ниже 20 мА.
В этом примере у нас есть 9-вольтовая батарея и красный светодиод с номинальным током 20 миллиампер или 0,020 ампер. Чтобы быть в безопасности, мы бы предпочли не управлять светодиодом с его максимальным током, а скорее рекомендуемым током, который указан в его спецификации как 18 мА или 0,018 ампер. Если мы просто подключим светодиод непосредственно к батарее, значения для закона Ома будут выглядеть так:
, следовательно:
и, поскольку у нас еще нет сопротивления:
Деление на ноль дает нам бесконечный ток! Ну, на практике не бесконечный, а столько тока, сколько может выдать батарея. Поскольку мы НЕ хотим, чтобы через наш светодиод протекал такой большой ток, нам понадобится резистор. Наша схема должна выглядеть так:
Точно таким же образом мы можем использовать закон Ома для определения номинала резистора, который даст нам желаемое значение тока:
следовательно:
подставив наши значения:
вычислив сопротивление:
Итак, нам нужен сопротивление резистора около 500 Ом, чтобы ток через светодиод оставался ниже максимального номинального тока.
500 Ом не является обычным значением для стандартных резисторов, поэтому в этом устройстве вместо него используется резистор на 560 Ом. Вот как выглядит наше устройство в собранном виде.
Успех! Мы выбрали сопротивление резистора, достаточно высокое, чтобы ток через светодиод оставался ниже его максимального номинала, но достаточно низкое, чтобы тока было достаточно, чтобы светодиод оставался красивым и ярким.
Этот пример со светодиодом и токоограничивающим резистором часто встречается в любительской электронике. Вам часто придется использовать закон Ома, чтобы изменить величину тока, протекающего через цепь. Другой пример этой реализации можно увидеть в светодиодных платах LilyPad.
При такой конфигурации вместо выбора резистора для светодиода резистор уже встроен в светодиод, поэтому ограничение тока выполняется без добавления резистора вручную.
Ограничение тока до или после светодиода?
Чтобы немного усложнить ситуацию, вы можете разместить токоограничивающий резистор с любой стороны светодиода, и он будет работать точно так же!
Многие люди, впервые изучающие электронику, сомневаются в том, что токоограничивающий резистор может располагаться с любой стороны светодиода, и схема будет работать как обычно.
Представьте себе реку в непрерывной петле, бесконечную, круговую, текущую реку. Если бы мы поместили в нем плотину, вся река перестала бы течь, а не только один берег. Теперь представьте, что мы помещаем в реку водяное колесо, которое замедляет течение реки. Неважно, в каком месте круга находится водяное колесо, оно все равно замедлит поток на 9-м уровне.0004 вся река .
Это упрощение, так как токоограничивающий резистор не может быть размещен где-либо в цепи ; его можно разместить на с любой стороны светодиода для выполнения своей функции.
Чтобы получить более научный ответ, обратимся к закону напряжения Кирхгофа. Именно из-за этого закона токоограничивающий резистор может располагаться с любой стороны светодиода и при этом иметь тот же эффект. Для получения дополнительной информации и решения некоторых практических задач по использованию KVL посетите этот веб-сайт.
Ресурсы и дальнейшие действия
Теперь вы должны понимать, что такое напряжение, ток, сопротивление и как они связаны между собой.