Содержание
Для чего нужен фонарик с ультрафиолетовым светом?
Широкое применение ультрафиолетовый свет нашел в сфере криминалистики и судебной медицины. Сегодня таким светом производители наделяют даже обычные светодиодные фонари для решения вполне себе бытовых задач. Используют ультрафиолетовый фонарик для проверки документов, денег, минералов и т.д.
Некоторые производственные компании помечают невидимой УФ-краской упаковки или детали своего производства для подтверждения их подлинности. Таким образом наносится и противоугонная автомобильная маркировка. УФ-краску добавляют в некоторые жидкости. Это помогает выявить утечку фреона в кондиционере, хладагента в холодильниках и т.д.
Используется фонарик ультрафиолетовый и для рыбалки. Такое его применение связано со способностью некоторых видов рыб видеть УФ-свет. На увеличение улова в этом случае влияет использование флуоресцентных блесен и воблеров. Такая приманка “впитывает” УФ-излучение и некоторое время сохраняет способность светиться им, становясь более заметной для хищнической рыбы.
Охотники вооружаются такими фонарями для скорейшего выслеживания раненого зверя. Кровь отлично поглощает УФ-излучение, становясь темнее на любом фоне и заметнее для человека. Это значительно упрощает слежку.
Мощный ультрафиолетовый фонарик для минералов позволяет быстро и легко находить некоторые из них. Минеральные вкрапления светятся определенным цветом при направлении на них источника УФ-света. Так их можно легко выявить, например, в горной породе, что успешно применяется в спелеологии, геологии.
Есть менее серьезное применение – подсветка отметок в игре “Квест”, видимых только участникам, имеющим фонарик с функцией УФ-подсветки. Среди развлекательных заведений, в основном в ночных клубах, свойства ультрафиолета применяются для выявления посетителей, попавших в помещение или на мероприятие без билета. УФ-краску легко заметить в условиях клубной темноты.
Можно продолжать этот список широкого применения ультрафиолета в наши дни, однако лучше перейдем к описанию того, как это работает. Что это за свет? Какими качествами обладает? Вреден ли он для человека?
Что такое ультрафиолетовый свет?
УФ-излучение относится к электромагнитным с интервалом длины волны 100-400 нанометров. Находится в диапазоне между видимым светом и невидимым рентгеновским излучением. Сама приставка “ultra” походит от латинского языка и означает “за пределами, сверх”. Обычно этот свет не виден человеческому глазу.
Нет принципиального отличия в работе между обычными светодиодами и излучающими УФ. Оба варианта работают от постоянного тока с номинальной силой от 20 мА до 350-700 мА (более мощные модели фонарей и ламп). Однако для создания УФ-варианта диода используются специальные присадки: арсенид галлия алюминия, нитрид галлия, индия, алюминия. Длина генерируемой ими УФ-волны составляет 100-400 нанометров – определяется материалом полупроводника.
Разновидности ультрафиолетовых волн
Таким образом, ультрафиолетовые волны отличаются между собой. Выделяют три разновидности в зависимости от их длины:
- UVA (400 – 320 нанометров) – безопасен для людей, проникает через атмосферу Земли и стекло;
- UVB (320 – 280 нм) – именно данный спектр солнечного луча запускает процессы выработки в организме человека витамина D, обеспечивает нам загар, используется в соляриях, но может быть опасным для здоровья, в частности – для зрения;
- UVC (280 – 100 нм) – самый опасный и жесткий ультрафиолет, может вызвать ожоги кожи. Задерживается атмосферой. Чаще всего применяется в медицине для дезинфекции – убивает бактерии, вирусы, грибки.
Так, каждому типу UV-волны найдено свое назначение. Некоторые полезны для человека, безопасны, могут быть использованы в быту. Другие способны нанести непоправимый вред здоровью, должны применятся при соблюдении определенных правил безопасности. Не случайно в больнице просят всех выйти с палаты или отвернуться от источника ультрафиолетового дезинфицирующего света и даже укрыть лицо полотенцем.
Группы фонарей по диапазону UV-луча
Итак, важное значение, которое имеет каждый ультрафиолетовый фонарик – длина волны. В быту используются фонари со светодиодом, излучающим УФ-свет приближенной к дальности 400 нанометров. Его пурпурно-фиолетовый цвет улавливается человеческим зрением. Самый новый тип УФ-светодиодов имеет длину луча 385 нм. В его освещении виден более широкий спектр УФ-красок, а значит и применение – шире. Сам луч в этом случае почти невидим, что облегчает, например, поиск и чтение скрытого текста.
К более мощным относятся источники УФ-излучения, выдающие ультрафиолет с лучом в 365 нанометров. К ним относятся профессиональные приборы. У них почти нет подсветки света (чуть заметная голубая засветка), что позволяет заметить даже самые мелкие вкрапления флуоресцентных веществ и элементов. Именно они позволяют точно проверить денежные банкноты, бланки, документы, используются в криминалистике и других специализированных областях.
Таким образом, чем короче УФ-луч, тем мощнее фонарь. Но как проверить ультрафиолетовый фонарик? Особенно на то, соответствует ли он заявленной длине луча. Сделать это несложно. Достаточно иметь при себе любой флуоресцентный предмет, например, денежная купюра или надпись, нанесенная УФ-маркером. Чем меньше длина волны ультрафиолетового источника света, тем менее проявленной будет защита на банкноте и тем лучше заметна надпись, сделанная УФ-чернилами.
Примеры моделей
Интересные модели УФ-фонарей предлагает компания Fenix. Так, компактный LD02 V2.0 с волной луча в 365 нм поможет увидеть защитные водяные знаки на купюрах, следы флуоресцентных агентов на одежде и других поверхностях. Вес – всего лишь 24 г (без батареи).
К более мощным относится тактическая модель TK25 UV. Справится с большим числом задач, может использоваться правоохранительными органами для проверки документов, охотниками в качестве подствольного, обычными пользователями в решении бытовых проблем. Длина УФ-волны – тоже 365 нм, но имеются больше режимов и возможностей, что отличает тактический фонарь от карманного. Вес – 156,5 г.
Также модели фонарей с UV-светодиодом имеются у Niteсore, например, Mh37UV или специализированный GEM10UV, предназначенный для проверки драгоценных камней.
Есть такие фонари и у других производителей – EagleTac, JetBeam, Яркий Луч и пр. Дальность луча у них отличается, ограничивая или расширяя диапазон применения.
Ультрафиолетовые фонарики для сушки УФ полимера на лобовом стекле
Внимание!!! Сайт в режиме настройки и заполнения. Все товары можно купить через каталог Ватсап https://wa.me/c/79321102661 — Дешевле Удобнее Быстрее. Телефон: +7-932-110-26-61
Вход в аккаунт
Регистрация
Почта
Телефон
Просто номер вашего сотового телефона.
Код из смс
Пожалуйста, введите код подтверждения регистрации, полученный на указанный номер телефона.
Пароль
Логин
Вы можете указать отдельный логин, чтобы не использовать email для входа.
Имя
Ваше имя, для отображения на сайте.
Поиск по сайту
Поиск…
Узнать партнерские цены
График работы
Адрес и контакты
Возврат товара
Характеристики
Производитель
Китай
Фокусное расстояние
Регулируемый
Расстояние осветителей
Защита от влаги
Нет
Материал корпуса
Алюминий
Зарядное устройство
Перезаряжаемый
Источник света
Светодиодные лампы
Функции
Ультрафиолетовый
Фокус
Да
Мощность
5
Тип фонаря
ручной
Режим переключения
Уменьшение
Модель светодиодных лампочек
T6
Тип товара
Фонари
Описание
detail.1000023.i0.405653068KR2ce»>На завершающем этапе ремонта скола на лобовом стекле удобно использовать УФ фонарик для сушки УФ полимера.
Во-первых, вы не тратите ресурс УФ лампы.
Во-вторых, если на автомобильном стекле два разрушения — скол и трещина в разных
местах, то проводить сушку можно одновременно. Это касается конечно,
если вы работаете профессионально и бережете время заказчика
В-третьих, на выездном ремонте просто незаменим.
Под основной ценой есть разновидности бод буквами А, Б, В.
Общие характеристики УФ фонариков.
1. Пиковый спектр излучения 365нм.
2. Металлический корпус.
3. Мощность 5Вт.
4. Работают в одном интенсивном режиме.
5. Время сушки 1-3минут. Зависит от того что сушите; полимер в сколе или запечатывающий состав.
Индивидуальные параметры.
Вариант А.
Работает от батарейки «АА» или Акб No 14500 — выдает большую мощность.
Функция — масштаб, точка.
Прищепка для одежды.
Вариант — Б.
Аккумулятор интегрирован в корпус.
Зарядка через USB.
Индикатор зарядки в кнопке; красный, зеленый.
Вариант — В.
Идет в комплекте с АКБ 2000мАч, провод для зарядки через корпус, кассета для батареек «ААА».
Работать можно напрямую от электросети.
Индикатор зарядки на корпусе.
Длинна 15см, самый крупный.
Ваше имя
Телефон
- Понедельник: 10:00 до 18:00
- Вторник: 10:00 до 18:00
- Среда: 10:00 до 18:00
- Четверг: 10:00 до 18:00
- Пятница: 10:00 до 18:00
- Суббота: Выходной
- Воскрсенье: Выходной
Заказы принимаются круглосуточно
Оптовые цены — 8(912)283-43-18
Консультация по оплате и доставке — 8(343)382-22-39
Консультация по товару — 8(909)020-07-70
Пункт самовывоза — ул. Добролюбова, 7А, Екатеринбург., Россия
Почта — [email protected]
Новый тип ультрафиолетового света делает воздух в помещении таким же безопасным, как и снаружи ученые из Колледжа врачей и хирургов Вагелос Колумбийского университета и в Великобритании обнаружили. Несмотря на то, что микробы продолжали распыляться в комнате, уровень оставался очень низким, пока горел свет.
Исследование предполагает, что дальний ультрафиолетовый свет от ламп, установленных на потолке, может быть высокоэффективной пассивной технологией для снижения передачи от человека к человеку болезней, передающихся воздушно-капельным путем, таких как COVID и грипп, в помещении, а также снижения риска следующего пандемия.
«Far-UVC быстро снижает количество активных микробов в воздухе помещений почти до нуля, делая воздух в помещении практически таким же безопасным, как воздух на улице», — говорит Дэвид Бреннер, доктор философии, директор Центра радиологических исследований Колумбийского университета Vagelos College. врачей и хирургов и соавтор исследования. «Использование этой технологии в местах, где люди собираются вместе в помещении, может предотвратить следующую потенциальную пандемию».
Исследование было опубликовано 23 марта в научном журнале Nature.
«Дальний ультрафиолетовый свет прост в установке, он недорогой, люди не должны менять свое поведение, и данные многочисленных исследований показывают, что это может быть безопасным способом предотвращения передачи любого вируса, включая вирус COVID. и его варианты, а также грипп, а также любые потенциальные будущие пандемические вирусы», — говорит Бреннер.
Что такое дальний ультрафиолетовый свет?
Дезинфекция воздуха в помещении дальним УФ-излучением — это новый подход к безопасному и эффективному уничтожению переносимых по воздуху вирусов в жилых помещениях, включая вирусы, вызывающие COVID и грипп.
Ученым уже несколько десятилетий известно, что ультрафиолетовый свет, известный как УФС, быстро убивает микробы, в том числе бактерии и вирусы. Но обычный бактерицидный УФ-свет нельзя использовать непосредственно для уничтожения переносимых по воздуху вирусов в жилых помещениях, поскольку он представляет потенциальную опасность для здоровья кожи и глаз.
Медицинский центр Ирвинга Колумбийского университета
Около десяти лет назад ученые Колумбийского университета предположили, что другой тип УФ-излучения, известный как дальнее УФ-излучение, будет так же эффективно уничтожать бактерии и вирусы, но без проблем с безопасностью, присущих обычному бактерицидному УФ-излучению. .
Дальний УФ-С свет имеет более короткую длину волны, чем обычный бактерицидный УФ-С, и несколько исследований, проведенных по всему миру, показывают, что он не может проникать в клетки кожи или глаза.
В последнее десятилетие многие исследования также показали, что дальнее ультрафиолетовое излучение эффективно уничтожает переносимые по воздуху бактерии и вирусы, которые намного меньше человеческих клеток. Но до сих пор эти исследования проводились только в небольших экспериментальных камерах, а не в полноразмерных комнатах, имитирующих реальные условия.
Новое исследование показывает, что дальнее ультрафиолетовое излучение очень эффективно в реальных комнатных условиях. в большой камере размером с комнату с той же скоростью вентиляции, что и в обычном доме или офисе (около трех воздухообменов в час).
Во время эксперимента опрыскиватель непрерывно выпускал в комнату аэрозольный туман из бактерий S. aureus . (Этот микроб был выбран потому, что он немного менее чувствителен к дальнему ультрафиолетовому излучению, чем коронавирусы, что дает исследователям достаточно консервативную модель.) Когда концентрация микробов в комнате стабилизировалась, исследователи включили имеющиеся в продаже потолочные лампы дальнего ультрафиолетового излучения. .
Лампы инактивировали более 98% находящихся в воздухе микробов всего за пять минут. Низкий уровень жизнеспособных микробов сохранялся с течением времени, несмотря на то, что микробы продолжали распыляться в помещении.
Эффективность различных подходов к снижению уровня вируса в помещении обычно измеряется с точки зрения эквивалентного воздухообмена в час. В этом исследовании лампы дальнего УФ-излучения производили 184 эквивалентных воздухообмена в час. Это превосходит любой другой подход к дезинфекции жилых помещений, где от 5 до 20 эквивалентных воздухообменов в час — это лучшее, что может быть достигнуто на практике.
«Наши испытания дали впечатляющие результаты, намного превосходящие возможности одной только вентиляции», — говорит Кеннет Вуд, доктор философии, преподаватель Школы физики и астрономии Университета Сент-Эндрюс и старший автор исследования. «Что касается предотвращения передачи болезней воздушно-капельным путем, лампы дальнего ультрафиолетового излучения могут сделать внутренние помещения такими же безопасными, как и пребывание на поле для гольфа в ветреный день в Сент-Эндрюсе».
Дальний УФ-излучение защищен от вариантов
«Предыдущие исследования показали, что дальнее УФ-излучение может убивать вирус COVID, другие коронавирусы человека, грипп и лекарственно-устойчивые бактерии», — говорит Бреннер. «Что особенно привлекательно в технологии дальнего УФ-излучения как практического метода предотвращения передачи болезней внутри помещений, так это то, что она будет одинаково хороша для инактивации всех будущих вариантов COVID, а также новых инфекционных вирусов, которые еще не появились, сохраняя при этом эффективность против «старых». вылепленные вирусы, такие как грипп и корь».
Наконец, из-за того, что ультрафиолет убивает микробы, вирусы и бактерии не могут выработать резистентность, как это происходит с вакцинами и лекарствами.
Ультрафиолетовые волны | Управление научной миссии
Пчелы, а также некоторые птицы, рептилии и другие насекомые могут видеть ближний ультрафиолетовый свет, отражающийся от растений. Отпугиватели насекомых привлекают насекомых ультрафиолетовым светом, чтобы заманить их в ловушку.
Ультрафиолетовый (УФ) свет имеет более короткую длину волны, чем видимый свет. Хотя УФ-волны невидимы для человеческого глаза, некоторые насекомые, например шмели, их видят. Это похоже на то, как собака может слышать звук свистка за пределами слышимости человека.
УЛЬТРАФИОЛЕТОВЫЙ СВЕТ НАШЕГО СОЛНЦА
Солнце является источником полного спектра ультрафиолетового излучения, которое обычно подразделяется на УФ-А, УФ-В и УФ-С. Эти классификации наиболее часто используются в науках о Земле. Лучи УФ-С являются наиболее вредными и почти полностью поглощаются нашей атмосферой. Лучи УФ-В — это вредные лучи, вызывающие солнечные ожоги. Воздействие УФ-В лучей увеличивает риск повреждения ДНК и других клеток живых организмов. К счастью, около 95 процентов лучей УФ-В поглощаются озоном в атмосфере Земли.
Авторы и права: Изображение предоставлено: NASA/SDO/AIA
Ученые, изучающие астрономические объекты, обычно обращаются к различным подразделениям ультрафиолетового излучения: ближний ультрафиолет (NUV), средний ультрафиолет (MUV), дальний ультрафиолет (FUV) и крайний ультрафиолет. (ЭУФ). Космический аппарат НАСА SDO сделал снимок ниже в нескольких длинах волн экстремального ультрафиолетового (EUV) излучения. Комбинация искусственных цветов показывает различные температуры газа. Красные цвета относительно холодные (около 60 000 градусов по Цельсию), а синие и зеленые более горячие (более миллиона градусов по Цельсию).
Космический аппарат NASA Solar Dynamics Observatory (SDO) сделал снимок плотной петли плазмы, извергающейся на поверхность Солнца — солнечного протуберанца. Видно, как плазма течет вдоль магнитного поля. Предоставлено: НАСА ozonewatch.gsfc.nasa.gov
Эксперимент Иоганна Риттера был разработан, чтобы подвергнуть фотобумагу воздействию света, выходящего за пределы видимого спектра, и доказать существование света за пределами фиолетового — ультрафиолетового света. Предоставлено: Трой Бенеш
ОТКРЫТИЕ УЛЬТРАФИОЛЕТОВОГО0057
В 1801 году Иоганн Риттер провел эксперимент по изучению существования энергии за пределами фиолетовой части видимого спектра. Зная, что фотобумага быстрее чернеет в синем свете, чем в красном, он подверг бумагу воздействию света, превышающего фиолетовый. Действительно, бумага почернела, доказывая существование ультрафиолетового света.
УЛЬТРАФИОЛЕТОВАЯ АСТРОНОМИЯ
Поскольку атмосфера Земли поглощает большую часть высокоэнергетического ультрафиолетового излучения, ученые используют данные со спутников, расположенных над атмосферой на орбите вокруг Земли, для обнаружения УФ-излучения, исходящего от нашего Солнца и других астрономических объектов. Ученые могут изучать образование звезд в ультрафиолетовом диапазоне, поскольку молодые звезды излучают большую часть своего света на этих длинах волн. На этом изображении, полученном космическим аппаратом NASA Galaxy Evolution Explorer (GALEX), видны новые молодые звезды в спиральных рукавах галактики M81.
Авторы и права: NASA/JPL-Caltech
На изображении справа показаны три разные галактики, снятые в видимом свете (три нижних изображения) и ультрафиолетовом свете (верхний ряд), сделанные телескопом НАСА для получения ультрафиолетовых изображений (UIT) на космическом корабле Astro-2. миссия.
Различие в том, как выглядят галактики, связано с тем, какой тип звезд сияет ярче всего в оптическом и ультрафиолетовом диапазоне длин волн. Ультрафиолетовые изображения галактик показывают в основном облака газа, содержащие новообразованные звезды, которые во много раз массивнее Солнца и сильно светятся в ультрафиолетовом свете. Напротив, изображения галактик в видимом свете показывают в основном желтый и красный свет старых звезд. Сравнивая эти типы данных, астрономы могут узнать о структуре и эволюции галактик.
ОЗОНОВАЯ «ДЫРА»
Химические процессы в верхних слоях атмосферы могут влиять на количество атмосферного озона, который защищает жизнь на поверхности от большей части вредного солнечного ультрафиолетового излучения. Каждый год «дыра» разреженного атмосферного озона расширяется над Антарктидой, иногда распространяясь на населенные районы Южной Америки и подвергая их воздействию повышенного уровня вредного ультрафиолетового излучения. Голландский прибор мониторинга озона (OMI) на борту спутника НАСА Aura измеряет количество следовых газов, важных для химического состава озона и качества воздуха. На изображении выше показано количество атмосферного озона в единицах Добсона — общепринятой единице измерения концентрации озона. Эти данные позволяют ученым оценить количество УФ-излучения, достигающего поверхности Земли, и прогнозировать дни с высоким УФ-индексом для информирования населения.
УЛЬТРАФИОЛЕТОВЫЙ СВЕТ ЗВЕЗД
Картографический проект Лайман-Альфа (LAMP) на борту лунного разведывательного орбитального аппарата может заглянуть в постоянно затененные кратеры на Луне, улавливая слабые отражения ультрафиолетового света, исходящего от далеких звезд.
Авторы и права: Ernest Wright LRO/LAMP
ПОЛЯРНОЕ
Полярное сияние вызывается высокоэнергетическими волнами, которые движутся вдоль магнитных полюсов планеты, возбуждая атмосферные газы и заставляя их светиться. Фотоны в этом высокоэнергетическом излучении сталкиваются с атомами газов в атмосфере, заставляя электроны в атомах возбуждаться или перемещаться в верхние оболочки атома. Когда электроны возвращаются на более низкую оболочку, энергия высвобождается в виде света, и атом возвращается в расслабленное состояние. Цвет этого света может показать, какой тип атома был возбужден. Зеленый свет указывает на наличие кислорода на более низких высотах. Красный свет может исходить от молекул кислорода на большей высоте или от азота. На Земле полярные сияния вокруг северного полюса называют северным сиянием.
ПОЛЯРНОЕ СИЯНИЕ ЮПИТЕРА
Космический телескоп Хаббл сделал это изображение северного полюса Юпитера в ультрафиолетовом диапазоне, огибающего северный полюс Юпитера наподобие лассо.
Авторы и права: Джон Кларк (Мичиганский университет) и НАСА
Это необычное изображение в искусственных цветах показывает, как Земля светится в ультрафиолетовом (УФ) свете. Камера/спектрограф дальнего ультрафиолета, установленная и оставленная на Луне экипажем Аполлона-16, сделала это изображение. Часть Земли, обращенная к Солнцу, отражает много УФ-излучения, и полосы УФ-излучения также видны на стороне, обращенной от Солнца.